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23. Metric data structures
Learning objectives:

• organizing the embedding space versus organizing its contents

• quadtrees and octtrees. grid file. two-disk-access principle

• simple geometric objects and their parameter spaces

• region queries of arbitrary shape

• approximation of complex objects by enclosing them in simple containers

Organizing the embedding space versus organizing its contents

Most of the data structures discussed so far organize the set of elements to be stored depending primarily, or  

even exclusively, on the relative values of these elements to each other and perhaps on their order of insertion into 

the data structure. Often, the only assumption made about these elements is that they are drawn from an ordered 

domain, and thus these structures support only comparative search techniques: the search argument is compared 

against stored elements. The shape of data structures based on comparative search varies dynamically with the set 

of elements currently stored; it does not depend on the static domain from which these elements are samples. These  

techniques organize the particular contents to be stored rather than the embedding space.

The data structures discussed in this chapter mirror and organize the domain from which the elements are  

drawn—much of their structure is determined before the first element is ever inserted. This is typically done on the  

basis of fixed points of reference which are independent of the current contents, as inch marks on a measuring scale 

are independent of what is being measured. For this reason we call data structures that organize the embedding  

space metric data structures. They are of increasing importance, in particular for spatial data, such as needed in 

computer-aided design or geographic data processing. Typically,  these domains exhibit a much richer structure 

than a mere order: In two- or three-dimensional Euclidean space, for example, not only is order defined along any 

line (not just  the coordinate axes),  but also  distance between any two points.  Most queries about  spatial  data 

involve the absolute position of elements in space, not just their relative position among each other. A typical query 

in graphics, for example, asks for the first object intercepted by a given ray of light. Computing the answer involves 

absolute position (the location of the ray) and relative order (nearest along the ray). A data structure that supports  

direct access to objects according to their position in space can clearly be more efficient than one based merely on  

the relative position of elements.

The  terms  "organizing  the  embedding  space"  and  "organizing  its  contents"  suggest  two  extremes  along  a 

spectrum of possibilities. As we have seen in previous chapters, however, many data structures are hybrids that  

combine features from distinct types. This is particularly true of metric data structures: They always have aspects of 

address computation needed to locate elements in space, and they often use list processing techniques for efficient  

memory utilization.
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Radix trees, tries 

We have encountered binary radix trees, and a possible implementation, in chapter 22 in the section “Extendible  

hashing”.  Radix  trees  with a  branching  factor,  or  fan-out,  greater  than  2  are  ubiquitous.  The  Dewey  decimal 

classification used in libraries is a radix tree with a fan-out of 10. The hierarchical structure of many textbooks, 

including this one, can be seen as a radix tree with a fan-out determined by how many subsections at depth d + 1  

are packed into a section at depth d.

As another example, consider tries, a type of radix tree that permits the retrieval of variable-length data. As we 

traverse the tree, we check whether or not the node we are visiting has any successors. Thus the trie can be very 

long along certain paths. As an example, consider a trie containing words in the English language. In Exhibit 23.1 

below, the four words 'a', 'at', 'ate', and 'be' are shown explicitly. The letter 'a' is a word and is the first letter of other  

words. The field corresponding to 'a' contains the value 1, signaling that we have spelled a valid word, and there is a  

pointer to longer words beginning with 'a'. The letter 'b' is not a word, thus is marked by a 0, but it is the beginning 

of many words, all found by following its pointer. The string 'aa' is neither a word nor the beginning of a word, so its  

field contains 0 and its pointer is 'nil'.

Exhibit 23.1: A radix tree over the alphabet of letters stores (prefixes of) words.

Only a few words begin with 'ate', but among these there are some long ones, such as 'atelectasis'. It would be  

wasteful to introduce eight additional nodes, one for each of the characters in 'lectasis', just to record this word,  

without making significant use of the fan-out of 26 provided at each node. Thus tries typically use an "overflow 

technique" to handle long entries:  The pointer field of the prefix 'ate'  might point to a text field that contains  

'(ate-)lectasis' and '(ate-)lier'.

Quadtrees and octtrees 

Consider a square recursively partitioned into quadrants. Exhibit 23.2 23.2 shows such a square partitioned to 

the depth of 4. There are 4 quadrants at depth 1, separated by the thickest lines; 4 · 4 (sub-)quadrants separated by 

slightly thinner lines; 43 (sub-sub-)quadrants separated by yet thinner lines; and finally, 44 = 256 leaf quadrants 

separated by the thinnest lines. The partitioning structure described is a quadtree, a particular type of radix tree of 

fan-out 4. The root corresponds to the entire square, its 4 children to the 4 quadrants at depth 1, and so on, as  

shown in the Exhibit 23.2.
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Exhibit 23.2: A quarter circle digitized on a 16 · 16 grid, and its representation as a 4-level quadtree.

A quadtree is  the obvious two-dimensional  analog  of  the one-dimensional  binary  radix tree  we have seen.  

Accordingly, quadtrees are frequently used to represent, store, and process spatial data, such as images. The figure 

shows a quarter circle, digitized on a 16 · 16 grid of pixels. This image is most easily represented by a 16 · 16 array of  

bits. The quadtree provides an alternative representation that is advantageous for images digitized to a high level of  

resolution.  Most  graphic  images  in  practice  are  digitized  on rectangular  grids  of  anywhere  from hundreds  to 

thousands of pixels on a side: for example, 512 · 512. In a quadtree, only the largest quadrants of constant color  

(black or white, in our example) are represented explicitly; their subquadrants are implicit.

The quadtree in Exhibit 23.2 is interpreted as follows. Of the four children of the root, the northwest quadrant,  

labeled 1, is simple: entirely white. This fact is recorded in the root. The other three children, labeled 0, 2, and 3,  

contain both black and white pixels. As their description is not simple, it is contained in three quadtrees, one for  

each quadrant. Pointers to these subquadtrees emanate from the corresponding fields of the root.

The southwestern quadrant labeled 2 in turn has four quadrants at depth 2. Three of these, labeled 2.0, 2.1, and 

2.2, are entirely white; no pointers emanate from the corresponding fields in this node. Subquadrant 2.3 contains  

both black and white pixels; thus the corresponding field contains a pointer to a sub-subquadtree.

In this discussion we have introduced a notation to identify every quadrant at any depth of the quadtree. The  

root is identified by the null string; a quadrant at depth d is uniquely identified by a string of d radix-4 digits. This 

string  can be  interpreted in  various ways  as  a  number  expressed  in  base  4.  Thus accessing and processing a 

quadtree is readily reduced to arithmetic.

Breadth-first addressing

Label the root 0, its children 1, 2, 3, 4, its grand children 5 through 20, and so on, one generation after the other.

Algorithms and Data Structures 256  A Global Text

http://creativecommons.org/licenses/by/3.0/


23. Metric data structures

   0

1  2     3  4

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Notice that the children of any node i are 4 · i + 1, 4 · i + 2, 4 · i + 3, 4 · i + 4. The parent of node i is (i – 1) div 4. 

This is similar to the address computation used in the heap of “Implicit data structures”, a binary tree where each  

node i has children 2 · i  and 2 · i + 1; and the parent of node i is obtained as i div 2.

Exercise

The string of radix 4 digits along a path from the root to any node is called the  path address of this node. 

Interpret the path address as an integer, most significant digit first. These integers label the nodes at depth d > 0  

consecutively from 0 to 4d – 1. Devise a formula that transforms the path address into the breadth-first address.  

This formula can be used to store a quadtree as a one-dimensional array.

Data compression

The representation of an image as a quadtree is sometimes much more compact than its representation as a bit  

map. Two conditions must hold for this to be true:

1. The image must be fairly large, typically hundreds of pixels on a side.

2. The image must have large areas of constant value (color).

The quadtree for the quarter circle above, for example, has only 14 nodes. A bit map of the same image requires  

256 bits. Which representation requires more storage? Certainly the quadtree. If we store it as a list, each node  

must be able to hold four pointers, say 4 or 8 bytes. If a pointer has value 'nil', indicating that its quadrant needs no 

refinement, we need a bit to indicate the color of this quadrant (white or black), or a total of 4 bits. If we store the  

quadtree breadth-first, no pointers are needed as the node relationships are expressed by address computation;  

thus a node is reduced to four three-valued fields ('white', 'black', or 'refine'), conveniently stored in 8 bits, or 1 byte.  

This  implicit  data  structure  will  leave  many  unused  holes  in  memory.  Thus  quadtrees  do  not  achieve  data  

compression for small images.

Octtrees

Exactly  the  same idea  for  three-dimensional  space  as  quadtrees  are  for  two-dimensional  space:  A  cube  is  

recursively partitioned into eight octants, using three orthogonal planes.

Spatial data structures: objectives and constraints

Metric data structures are used primarily for storing spatial data, such as points and simple geometric objects 

embedded in a multidimensional space. The most important objectives a spatial data structure must meet include:

1. Efficient handling of large, dynamically varying data sets in interactive applications

2. Fast access to objects identified in a fully specified query

3. Efficient processing of proximity queries and region queries of arbitrary shape

4. A uniformly high memory utilization

Achieving these objectives is subject to many constraints, and results in trade-offs.

Managing disks. By "large data set" we mean one that must be stored on disk; only a small fraction of the data  

can be kept in central memory at any one time. Many data structures can be used in central memory, but the choice  

is  much  more  restricted  when  it  comes  to  managing  disks  because  of  the  well-known  "memory  speed  gap" 
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phenomenon.  Central  memory  is  organized  in  small  physical  units  (a  byte,  a  word)  with  access  times  of 

approximately 1 microsecond, 10–6 second. Disks are organizein large physical blocks (512 bytes to 5kilobytes) with 

access times ranging from 10 to 100 milliseconds (10–2 to 10–1 second). Compared to central memory, a disk delivers 

data blocks typically 103 times larger with a delay 104 times greater. In terms of the data rate delivered to the 

central processing unit:

the disk is a storage device whose effectiveness is within an order of magnitude of that of central memory. The large 

size of a physical disk block is a potential source of inefficiency that can easily reduce the useful data rate of a disk a 

hundredfold or a thousandfold. Accessing a couple of bytes on disk, say a pointer needed to traverse a list, takes  

about as long as accessing the entire disk block. Thus the game of managing disks is about minimizing the number 

of disk accesses.

Dynamically varying data.  The majority of computer applications today are interactive. That means that 

insertions, deletions, and modifications of data are at least as frequent as operations that merely process fixed data. 

Data structures that entail a systematic degradation of performance with continued use (such as ever-lengthening  

overflow  chains,  or  an  ever-increasing  number  of  cells  marked  "deleted"  in  a  conventional  hash  table)  are 

unsuitable.  Only  structures  that  automatically  adapt  their  shape  to  accommodate  ever-changing  contents  can 

provide uniform response times.

Instantaneous response.  Interactive use of computers sets another major challenge for data management: 

the  goal  of  providing  "instantaneous  response"  to  a  fully  specified  query.  "Fully"  specified  means  that  every 

attribute relevant for the search has been provided, and that at most one element satisfies the query. Imagine the 

user clicking an icon on the screen, and the object represented by the icon appears instantaneously. In human 

terms, "instantaneous" is a well-defined physiological quantity, namely, about of a second, the limit of human time 

resolution. Ideally, an interactive system retrieves any single element fully specified in a query within 0.1 second.

Two-disk-access principle. We have already stated that in today's technology, a disk access typically takes 

from tens of milliseconds. Thus the goal of retrieving any single element in 0.1 second translates into "retrieve any  

element in at most a few disk accesses". Fortunately, it turns out that useful data structure can be designed that 

access data in a two-step process: (1) access the correct portion of a directory, and (2) access the correct data  

bucket. Under the assumption that both data and directory are so large that they are stored on disk, we call this the  

two-disk-access principle.

Proximity queries and region queries of arbitrary shape. The simplest example of a proximity query is 

the operation 'next', which we have often encountered in one-dimensional data structure traversals: Given a pointer  

to an element,  get the next  element (the successor or the predecessor)  according to the order defined on the 

domain.  Another  simple  example  is  an  interval  or  range  query  such  as  "get  all  x  between  13  and  17".  This 

generalizes directly to k-dimensional orthogonal range queries  such as the two-dimensional query "get all (x1, x2) 

with 13 ≤ x1 < 17 and 3 ≤ x2 < 4". In geometric computation, for example, many other instances of proximity queries 

are important, such as the "nearest neighbor" (in any direction), or intersection queriesamong objects.  Region 

queries of arbitrary shape (not just rectangular) are able to express a variety of geometric conditions.
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Uniformly high memory utilization. Any data structure that adapts its  shape to dynamically changing 

contents  is  likely  to  leave  "unused  holes"  in  storage  space:  space  that  is  currently  unused,  and  that  cannot 

conveniently  be  used  for  other  purposes  because it  is  fragmented.  We have encountered this  phenomenon in 

multiway trees such as B-trees and in hash tables. It is practically unavoidable that dynamic data structures use 

their allocated space to less than 100%, and an average space utilization of 50% is often tolerable. The danger to  

avoid is a built-in bias that drives space utilization toward 0 when the file shrinks—elements get deleted but their  

space is not relinquished. The grid file, to be discussed next, achieves an average memory utilization of about 70%  

regardless of the mix of insertions or deletions.

The grid file

The  grid  file  is  a  metric  data  structure  designed  to  store  points  and  simple  geometric  objects  in  

multidimensional space so as to achieve the objectives stated above. This section describes its architecture, access 

and update algorithms, and properties. More details can be found in [NHS 84]  and [Hin 85].

Scales, directory, buckets

Consider as  an example a two-dimensional domain: the Cartesian product  X1  × X2, where X1 = 0 .. 1999 is a 

subrange of the integers, and X2 = a .. z is the ordered set of the 26 characters of the English alphabet. Pairs of the  

form (x1, x2), such as (1988, w), are elements from this domain.

The bit map is a natural data structure for storing a set S of elements from X1  × X2. It may be declared as

var  T: array[X1, X2] of boolean;

with the convention that

T[x1, x2] = true  ⇔  (x1, x2) ∈  S.

Basic set operations are performed by direct access to the array element corresponding to an element: find(x 1, 

x2)  is  simply  the  boolean  expression  T[x1,  x2];  insert(x1,  x2)  is  equivalent  to  T[x1,  x2]:=  'true',  delete(x1,  x2)  is 

equivalent to T[x1, x2] := 'false'. The bit map for our small domain requires an affordable 52k bits. Bit maps for  

realistic examples are rarely affordable, as the following reasoning shows. First, consider that x and y are just keys 

of records that hold additional data. If space is reserved in the array for this additional data, an array  element is not  

a bit but as many bytes as are needed, and all the absent records, for elements (x1, x2) ∉ S, waste a lot of storage. 

Second,  most  domains  are  much  larger  than  the  example  above:  the  three-dimensional  Euclidean  space,  for 

example, with  elements (x, y, z) taken as triples of 32-bit integers, or 64-bit floating-point numbers, requires bit 

maps of about 1030 and 1060 bits, respectively. For comparison's sake: a large disk has about 10 10 bits.

Since large bit maps are extremely sparsely populated, they are amenable to data compression. The grid file is 

best understood as a practical data compression technique that stores huge, sparsely populated bit maps so as to  

support direct access. Returning to our example, imagine a historical database indexed by the year of birth and the  

first letter of the name of scientists: thus we find 'John von Neumann' under (1903, v). Our database is pictured as a 

cloud of points in the domain shown in Exhibit 23.3; because we have more scientists (or at least, more records) in 

recent years, the density increases toward the right. Storing this database implies packing the records into buckets 

of fixed capacity to hold c (e.g. c = 3) records. The figure shows the domain partitioned by orthogonal hyperplanes  

into box-shaped grid cells, none of which contains more than c points.
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Exhibit 23.3: Cells of a grid partition adapt their size so that no cell is populated by more than c points.

A grid file for this database contains the following components:

• Linear scales show how the domain is currently partitioned.

• The directory is an array whose elements are in one-to-one correspondence with the grid cells; each entry 

points to a data bucket that holds all the records of the corresponding grid cell.

Access to the record (1903, v) proceeds through three steps:

1. Scales transform key values to array indices: (1903, v) becomes (5, 4). Scales contain small amounts of  

data, which is kept in central memory; thus this step requires no disk access.

2. The index tuple (5, 4) provides direct access to the correct element of the directory. The directory may be 

large and occupy many pages on disk, but we can compute the address of the correct directory page and in 

one disk access retrieve the correct directory element.

3. The directory element contains a pointer (disk address) of the correct data bucket for (1903, v), and the 

second disk access retrieves the correct record: [(1903, v), John von Neumann …].

Disk utilization

The grid file does not allocate a separate bucket to each grid cell—that would lead to an unacceptably low disk 

utilization. Exhibit 23.4 suggests, for example, that the two grid cells at the top right of the directory share the same 

bucket. How this bucket sharing comes about, and how it is maintained through splitting of overflowing buckets, 

and merging sparsely populated buckets, is shown in the following.
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Exhibit 23.4: The search for a record with key values (1903, v) starts with the scales and 

proceeds via the directory to the correct data bucket on disk.

The dynamics of splitting and merging

The dynamic behavior of the grid file is best explained by tracing an example: we show the effect of repeated  

insertions in  a  two-dimensional  file.  Instead of  showing the grid directory,  whose elements  are  in  one-to-one 

correspondence with the grid blocks, we draw the bucket pointers as originating directly from the grid blocks.

Initially, a single bucket A, of capacity c = 3 in our example, is assigned to the entire domain (Exhibit 23.5). 

When bucket A overflows, the domain is split, a new bucket B is made available, and those records that lie in one 

half of the space are moved from the old bucket to the new one (Exhibit 23.6). If bucket A overflows again, its grid 

block (i.e. the left half of the space) is split according to some splitting policy: We assume the simplest splitting  

policy of alternating directions. Those records of A that lie in the lower-left grid block of Exhibit 23.7 are moved to a 

new bucket C. Notice that as bucket B did not overflow, it is left alone: Its region now consists of two grid blocks.  

For  effective  memory  utilization  it  is  essential  that  in  the  process  of  refining  the  grid  partition  we  need  not  

necessarily split a bucket when its region is split.

Exhibit 23.5: A growing grid file starts with a single bucket allocated to the entire key space.
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Exhibit 23.6: An overflowing bucket triggers a refinement of the space partition.

Exhibit 23.7: Bucket A has been split into A and C, but the contents of B remain unchanged.

Assuming that records keep arriving in the lower-left corner of the space, bucket C will overflow. This will trigger 

a further refinement of the grid partition as shown in Exhibit 23.8, and a splitting of bucket C into C and D. The 

history of repeated splitting can be represented in the form of a binary tree, which imposes on the set of buckets  

currently in use (and hence on the set of regions of these buckets) a twin system (also called a buddy system): Each 

bucket and its region have a unique twin from which it split off. In Exhibit 23.8, C and D are twins, the pair (C, D) is 

A's twin, and the pair (A, (C, D)) is B's twin.

Exhibit 23.8: Bucket regions that span several cells ensure high disk utilization.

Deletions trigger merging operations. In contrast to one-dimensional storage, where it is sufficient to merge 

buckets that split  earlier,  merging policies for multidimensional grid files need to be more general in order to  

maintain a high occupancy.
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Simple geometric objects and their parameter spaces

Consider a class of simple spatial objects, such as aligned rectangles in the plane (i.e. with sides parallel to the  

axes). Within its class, each object is defined by a small number of parameters. For example, an aligned rectangle is  

determined by its center (cx, cy) and the half-length of each side, dx and dy.

An object defined within its class by k parameters can be considered to be a point in a k-dimensional parameter 

space.  For example, an aligned rectangle becomes a point  in four-dimensional space.  All of the geometric and 

topological properties of an object can be deduced from the class it belongs to and from the coordinates of its  

corresponding point in parameter space.

Different  choices  of  the  parameter  space  for  the  same  class  of  objects  are  appropriate,  depending  on 

characteristics of the data to be processed. Some considerations that may determine the choice of parameters are:

1. Distinction between location parameters and extension parameters. For some classes of simple objects it 

is reasonable to distinguish location parameters, such as the center (cx, cy) of an aligned rectangle, from 

extension parameters, such as the half-sides dx and dy. This distinction is always possible for objects that 

can be described as Cartesian products of spheres of various dimensions. For example, a rectangle is the 

product  of  two  one-dimensional  spheres,  a  cylinder  the  product  of  a  one-dimensional  and  a  two-

dimensional  sphere.  Whenever this  distinction can be made,  cone-shaped search regions generated by 

proximity queries as described in the next section have a simple intuitive interpretation: The subspace of 

the location parameters acts as a "mirror" that reflects a query.

2. Independence of parameters, uniform distribution. As an example, consider the class of all intervals on a 

straight line. If intervals are represented by their left and right endpoints, lx and rx, the constraint lx ≤ rx  

restricts all representations of these intervals by points (lx, rx) to the triangle above the diagonal. Any data 

structure that organizes the embedding space of the data points, as opposed to the particular set of points  

that must be stored, will pay some overhead for representing the unpopulated half of the embedding space. 

A coordinate transformation that distributes data all over the embedding space leads to more efficient 

storage. The phenomenon of nonuniform data distribution can be worse than this. In most applications, the  

building blocks from which complex objects are built are much smaller than the space in which they are 

embedded, as the size of a brick is small compared to the size of a house. If so, parameters such as lx and rx  

that locate boundaries of an object are highly dependent on each other. Exhibit 23.9 shows short intervals 

on a long line clustering along the diagonal, leaving large regions of a large embedding space unpopulated; 

whereas the same set of intervals represented by a location parameter cx and an extension parameter dx 

fills a smaller embedding space in a much more uniform way. With the assumption of bounded dx, this data  

distribution is easier to handle.
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Exhibit 23.9: A set of intervals represented in two different parameter spaces.

Region queries of arbitrary shape

Intersection is a basic component of other proximity queries, and thus deserves special attention. CAD design 

rules, for example, often require different objects to be separated by some minimal distance. This is equivalent to  

requiring that objects surrounded by a rim do not intersect. Given a subset Γ of a class of simple spatial objects with 

parameter space H, we consider two types of queries:

• point query Given a query point q, find all objects A ∈ Γ  for which q ∈ A.

• point set query Given a query set Q of points, find all objects A ∈ Γ  that intersect Q.

Point query. For a query point q compute the region in H that contains all points representing objects in Γ that 

overlap q.

1. Consider the class of intervals on a straight line. An interval given by its center cx and its half length dx  

overlaps a point q with coordinate qx if and only if cx – dx ≤ qx ≤ cx + dx.

2. The class of aligned rectangles in the plane (with parameters cx, cy, dx, dy) can be treated as the Cartesian  

product of two classes of  intervals,  one along the x-axis,  the other along the y-axis (Exhibit  23.10). All 

rectangles that contain a given point q are represented by points in four-dimensional space that lie in the  

Cartesian product of two point-in-interval query regions. The region is shown by its projections onto the cx-

dx plane and the cy-dy plane.
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Exhibit 23.10: A set of aligned rectangles represented as a set of points in a four-dimensional  

parameter space. A point query is transformed into a cone-shaped region query.

3. Consider the class of circles in the plane. We represent a circle as a point in three-dimensional space by the 

coordinates  of  its  center  (cx,  cy) and its  radius r  as  parameters.  All  circles  that  overlap a point  q are  

represented in the corresponding three-dimensional  space by points that  lie  in  the cone with vertex q 

shown in  Exhibit  23.11. The axis of the cone is parallel to the r-axis (the extension parameter), and its 

vertex q is considered a point in the cx-cy plane (the subspace of the location parameters).

Exhibit 23.11: Search cone for a point query for circles in the plane.

Point set query.  Given a query set Q of points, the region in H that contains all points representing objects A  

∈ Γ that intersect Q is the union of the regions in H that results from the point queries for each point q ∈ Q. The 

union of cones is a particularly simple region in H if the query set Q is a simple spatial object.
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1. Consider the class of intervals on a straight line. An interval i = (cx, dx) intersects a query interval Q = (cq, 

dq) if and only if its representing point lies in the shaded region shown in Exhibit 23.12; this region is given 

by the inequalities cx – dx ≤ cq + dq and cx + dx ≥ cq – dq.

Exhibit 23.12: An interval query, as a union of point queries, again gets transformed into a search cone.

2. The class of  aligned rectangles in the plane is again treated as the Cartesian product  of  two classes of  

intervals, one along the x-axis, the other along the y-axis. If Q is also an aligned rectangle, all rectangles  

that intersect Q are represented by points in four-dimensional space lying in the Cartesian product of two 

interval intersection query regions.

3. Consider the class of circles in the plane. All circles that intersect a line segment L are represented by points  

lying in the cone-shaped solid shown in Exhibit 23.13. This solid is obtained by embedding L in the cx-cy 

plane, the subspace of the location parameters, and moving the cone with vertex at q along L.
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Exhibit 23.13: Search region as a union of cones.

Evaluating region queries with a grid file

We have seen that proximity queries on spatial objects lead to search regions significantly more complex than  

orthogonal range queries. The grid file allows the evaluation of irregularly shaped search regions in such a way that  

the complexity of the region affects CPU time but not disk accesses. The latter limits the performance of a data base 

implementation. A query region Q is matched against the scales and converted into a set I of index tuples that refer 

to entries in the directory. Only after  this preprocessing do we access disk to retrieve the correct pages of  the 

directory and the correct data buckets whose regions intersect Q (Exhibit 23.14).

Exhibit 23.14: The cells of a grid partition that overlap an arbitrary query region Q are determined by 

merely looking up the scales. 

Interaction between query processing and data access

The point of  the two preceding sections was to show that in a metric data structure, intricate computations 

triggered by proximity queries can be preprocessed to a remarkable extent before the objects involved are retrieved. 
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Query preprocessing may involve a significant amount of computation based on small amounts of auxiliary data—

the scales and the query—that are kept in central memory. The final access of data from disk is highly selective—

data retrieved has a high chance of being part of the answer.

Contrast this to an approach where an object can be accessed only by its name (e.g. the part number) because  

the geometric information about its location in space is only included in the record for this object but is not part of 

the accessing mechanism. In such a database, all objects might have to be retrieved in order to determine which 

ones answer the query. Given that disk access is the bottleneck in most database applications, it pays to preprocess  

queries as much as possible in order to save disk accesses.

The integration of query processing and accessing mechanism developed in the preceding sections was made 

possible by the assumption of simple objects, where each instance is described by a small number of parameters.  

What can we do when faced with a large number of irregularly shaped objects?

Complex, irregularly shaped spatial objects can be represented or approximated by simpler ones in a variety of  

ways,  for  example:  decomposition,  as  in  a  quad  tree  tessellation  of  a  figure  into  disjoint  raster  squares; 

representation as a  cover of overlapping simple shapes; and enclosing each object in a  container chosen from a 

class of simple shapes. The container technique allows efficient processing of proximity queries because it preserves 

the most important properties for proximity-based access to spatial objects, in particular: It does not break up the 

object into components that must be processed separately, and it eliminates many potential tests as unnecessary (if  

two containers don't intersect, the objects within won't either). As an example, consider finding all polygons that  

intersect a given query polygon, given that each of them is enclosed in a simple container such as a circle or an  

aligned  rectangle.  Testing  two  polygons  for  intersection  is  an  expensive  operation  compared  to  testing  their  

containers for intersection. The cheap container test excludes most of the polygons from an expensive, detailed 

intersection check.

Any approximation technique limits the primitive shapes that must be stored to one or a few types: for example, 

aligned rectangles or boxes. An instance of such a type is determined by a few parameters, such as coordinates of its  

center and its extension, and can be considered to be a point in a (higher-dimensional) parameter space.  This  

transformation reduces object storage to point storage, increasing the dimensionality of the problem without loss of  

information. Combined with an efficient multi-dimensional data structure for  point storage it is the basis for an 

effective implementation of databases for spatial objects.

Exercises

1. Draw three quadtrees, one for each of the 4 · 8 pixel rectangles A, B and C outlined in Exhibit 23.15.
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23. Metric data structures

Exhibit 23.15: The location of congruent objects greatly affects the complexity of a quadtree 

representation.

2. Consider a grid file that stores points lying in a two-dimensional domain: the Cartesian product X1 × X2, 

where X1 = 0 .. 15 and X2 = 0 .. 15 are subranges of the integers. Buckets have a capacity of two points.

(a) Insert the points (2, 3), (13, 14), (3, 5), (6, 9), (10, 13), (11, 5), (14, 9), (7, 3), (15, 11), (9, 9), and (11, 10)  

into the initially empty grid file and show the state of the scales, the directory, and the buckets after  

each insert operation. Buckets are split such that their shapes remain as quadratic as possible.

(b) Delete the points (10, 13), (9, 9), (11, 10), and (14, 9) from the grid file obtained in a) and show the state  

of the scales, the directory, and the buckets after each delete operation. Assume that after deleting a  

point in a bucket this bucket may be merged with a neighbor bucket if their joint occupancy does not  

exceed two points. Further, a boundary should be removed from its scale if there is no longer a bucket  

that is split with respect to this boundary.

(c) Without  imposing  further  restrictions  a  deadlock  situation  may  occur  after  a  sequence  of  delete 

operations: No bucket can merge with any of its neighbors, since the resulting bucket region would no 

longer  be  rectangular.  In  the  example  shown in  Exhibit  23.16 the  shaded  ovals  represent  bucket 

regions. Devise a merging policy that prevents such deadlocks from occurring in a two-dimensional 

grid file.

269



This book is licensed under a Creative Commons Attribution 3.0 License

Exhibit 23.16: This example shows bucket regions that cannot be merged pairwise.

3. Consider the class of circles in the plane represented as points in three-dimensional parameter space as 

proposed in chapter 23 in the section “Region queries of arbitrary shape”. Describe the search regions in  

the parameter space (a) for all the circles intersecting a given circle C, (b) for all the circles contained in C, 

and (c) for all the circles enclosing .
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